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1. Introduction

The design and performance evaluation of dis-
tributed systems is an important and difficult
problem and one which will occupy our attention
for the next decade. Indeed it represents an exam-
ple of the class of resource allocation problems
with which we have been wrestling for many years
in a variety of different contexts. For example, the
problem of designing the operating system for
time-shared computers was a major issue in the
1960’s, the issue of wide-area network design and
access occupied our interest in the 1970’s, the
problem of local area network design was our
focus for the decade of the 1980’s and we foresee
that the general problem of distributed processing
will surely occupy our attention for the coming
decade of the 1990’s.

One aspect of the problem has to do with
resolving conflicts. This issue manifests itself both
in centralized, as well as in distributed systems.
The problem arises when more than one user
requires access to the same resource at the same
time. Usually we cannot predict exactly when a
user will require access to the resource, we cannot
predict how long each user will hold the resource
once he gains access, most users only require the
occasional use of the resource, and, in addition,
when a user asks for access he usually expects
immediate access to that resource. This presents a
nasty set of requirements on the part of the user
and we refer to such a class of users as being
bursty and asynchronous. There are four canonical
ways of resolving conflicts. The first is queueing:
here one user gets access to the resource while the
others wait for their turn. The second resolution
method is that of splitting: here, the resource is
split into as many pieces as there are competing
users and each user gets a piece of the resource.
The third canonical resolution method is blocking:
here, one user gets access to the resource and the
others are asked to go away. The fourth method is
smashing: here, if more than one user asks for
access, no one is given access. Examples of each of
these systems are prevalent throughout the com-
puter and communication industry. Of course, one
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may use hybrid mixtures of these four canonical
resolution methods.

Queueing is perhaps the most common conflict
resolution method and is often found in our cur-
rent technology. We are all familiar with the price
one pays for queueing, namely, an increase in
response time due to the sharing of a resource
with other users (see for example, [1,2]). However,
in a distributed system, we are confronted with
additional access problems and delays beyond
those due to pure queueing. This comes about for
many reasons discussed in the next section, all
related to the fact that one cannot form a queue
for free in a distributed environment. In particu-
lar, we will focus later in this paper on the specific
issue of synchronization among coupled processes.

2. Problems of Distributed Access

Once we distribute resources and users, we are
faced with a number of difficult conflict resolution
and access problems. One way to divide these
problems into recognizable systems is to consider
a two-dimensional description where the first di-
mension describes the degree of coupling among
the distributed processes (i.e. the amount of com-
munication and interaction among them) and
where the second dimension describes the distance
that separates these processes. This may be seen in
Figy 1.

In this figure, the items above the dashed line
within a quadrant refer to processing applications,
whereas items below the dashed line refer to com-
munications applications. Applications in the case
of tightly coupled processes which are close to
each other include parallel processing (a number
of processors cooperating in the execution of a
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Fig. 1. Examples of distributed systems.

single problem) as well as back plane buses and
high speed LANs. In the case of loosely coupled
processes which are close to each other, we include
such things as distributed processing (a number of
processors, each possibly working on a different
problem with occasional interaction among these
processors) as well as LANs and MANs. Loosely
coupled processes which are separated by large
distances include applications such as distributed
access (e.g. remote access to a data base) as well as
wide-area networks. However, in the case of tightly
coupled processes which are far from each other,
we find very few applications, all of which are
extremely difficult due to the large amount of
interaction required at what may be long distances
and/or long delays.

A major problem that we face in distributed
access is that we usually lack global knowledge
regarding the system state. A number of things
contribute to this lack of global knowledge and
manifest themselves as problems. For example, a
long distance between users which must interact
becomes a problem with regard to the speed with
which they can interact and the bandwidth of the
communications of that interaction (for example,
it takes light approximately 15000 microseconds
to cross the United States!); thus, the time for
state information to be exchanged between
processes may be seriously delayed leading to a
lack of global knowledge. Another problem is that
not all processes (users) may be in immediate
communication with each other; for example, two
users may not be able to hear each other and may
require intermediate users to relay information
between them. Sometimes the state information
we get is incomplete and sometimes it is incorrect.
Even if it is complete and correct, it may be that
the state information is stale by the time we have
an opportunity to use it, since it may take a user a
certain amount of time to get to the location
where he can use the information he gathered
previously. Thus, lack of global knowledge pre-
vents perfect use of all system resources in ad-
dition to any congestion problems which would
arise in a centralized configuration with perfect
knowledge.

Another source of difficulty in distributed sys-
tems has to do with access to resources them-
selves. For example, even though there is a set of
resources in a system, not all users may be allowed
access to certain of the resources. Livny and Mel-
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Fig. 2. Performance of N M/M/1 queueing systems.

man [3], studied the case of N independent
M/M/1 queueing systems, each with its own in-
dependent arrival process at rate A and each with
its own server at rate p. For this system, the
probability Q that at least one customer is waiting
in some queue and at least one server is idle is
given by

0=1-p"+1-0)"["-(1+p)"]. (21)

In Fig. 2, we plot Q as a function of p=X\/u
with N as a parameter. From this result we see
that Q approaches 1 for all values of p in the
range 0 <p <1, as the number of independent
systems increases (N — oo) indicating serious de-
gradation to system performance. Of course, this
is only a simple measure of system degradation
but does indicate the cost of prohibited access.

One way to improve performance of these N
independent queueing systems is to allow some
jockeying among the queues. A model which in-
troduces this jockeying is to allow each user from
queve n (n=1,2,..., N) to move to queue n + 1
(mod N) at a rate a. Clearly, for a =0, we have
Livny’s model and for a = oo we have a simple
M/M/N queue which provides, in some sense,
perfect sharing of the N servers. Unfortunately,
this model with jockeying is an unsolved coupled
queueing problem (even for the case N = 2); cou-
pled queueing problems are very difficult in gen-
eral.

Another problem with access has to do with the
fact that the distributed system may be lossy; by
this we mean it is possible, that, as the load
increases, the throughput might decrease due to
internal waste of resources (see for example [4]).

The access problem may also manifest itself, in
some cases, by requiring that resources be used in

series (one after the other) rather than all at once.
This leads to increased delays and possibly ineffi-
cient use of resources. An example here might be
that of a message passing through a wide-area
network which must hop from channel to channel
as it makes its way through the network.

Another manifestation of this access problem is
that there may be synchronization and/or prece-
dence constraints in the way in which the tasks
required by a user are executed. This arises with
the parallel use of processors and possible restric-
tions on how much parallelism the algorithm or
the application allows. It is on this type of prob-
lem that we focus in the remainder of this paper.
Below, we give a description of the problem, a
model of the system, analysis of its behavior and a
discussion of the results.

3. A Model for Synchronization Beween Two
Processes

Assume we have a job which is partitioned into
two processes, each of which is executed on a
separate processor. As these processes are ex-
ecuted, we consider that they advance along the
x-axis in steps of length one (i.e. they visit the
non-negative integers), each beginning at x = 0 at
time 7=0. Each process independently takes an
exponentially distributed amount of time, with
parameter A; (i =1, 2), to advance from position
k to position k+1 (k=0,1,2,...). When pro-
cess i advances one unit along this axis, it will
send a message to the other process with probabil-
ity ¢; (0 < g;<1). Upon receiving a message from
the other (sending) process, this (receiving) pro-
cess will do the following:

(1) If its position along the x-axis is equal to or
behind the sending process, it will ignore the mes-
sage.

(2) If it is ahead of the sending process, it will
immediately move back (i.e., “rollback”) along the
x-axis to the current position of the sending pro-
cess.

This is a simple model of distributed simulation
(motivated by the time warp distributed simula-
tion algorithm [5S]) where two processors are both
working on a simulation job in an effort to speed
it up. They both proceed independently until such
time as one (slower) process transmits a message
in the “past” of the other (faster) process. This
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causes the faster process to “rollback” to the
point that the slower process is at, after which
they advance independently again until the next
rollback, etc.

Let F(z) = position of the first process (process
1) at time ¢ and let S(z) = position of the second
process (process 2) at time ¢. Further, let

D(¢)=F(t) - 8(2);

D(t) =0 whenever (2) occurs (i.e., a rollback). We
are interested in studying the Markov process
D(t). From our assumptions that F(0) = S(0) =0,
we have D(0) = 0. Clearly, D(¢) can take on any
integer value (i.e., it certainly can go negative). We
will solve for

Pr= lim P[D(t)=k]’
t— o0

k=..,=2,-1,0,1,2,... (3.1)

namely, the equilibrium probability for the
Markov Chain D(t). Moreover, we will find the
average separation between processes as well as
the speedup with which the computation proceeds
when using two processors relative to the use of a
single processor as described below.

Our model is that of a discrete state, continu-
ous time process. Some previous work on varia-
tions of this model already exists. For example,
Mitra and Mitrani [6] studied a related model in
which they considered a continuous state, discrete
time model not unlike the one we have described
here. Their results are similar to ours in some ways
although their method of analysis appears to be
far more complex than ours. Lavenberg, Muntz,
and Samadi [7] provide an approximate analysis
of a continuous time, continuous state model. (We
have also completed the analysis of the discrete
time, discrete state case which will be published
elsewher.) Moreover, Felderman and Kleinrock [8]
give an upper bound on the gain in speedup that
P unsynchronized processors can achieve relative
to P processors which are forced to synchronize at
every step.

4. Analysis

Let us analyze the behavior of these two cou-
pled processes which we have modeled as a one-
dimensional discrete state, continuous time

Markov Chain. The following balance equations
are easily obtained:

(A + ) pr= MPr-1+ X8, pisr,

k=1,2,..., (4.1)
(M +A)p = APyt MG P (k4 1)s
b=i.3 .. (42)
o0 o0
(M +A)Ppo=2Mg X P+ Mgy Y P
k=1 k=1
+Mgp NG P (4.3)

where g, =1—g,.

We solve this system of linear difference equa-
tions using the usual approach of z-transforms [1]
by defining the two transforms

R(z)= ¥ pi2", (44)
k=1
[e o]
Q(z)= X p_p 2~ (4.5)
k=1
We further define the relative speed parameter
A
a= m . (46)

Multiplying (4.1) by z¥ and summing over the
range k=1, 2,...we Obtain

R(z) = 2\302P1 = apo2) (4.7)
az*—z+aq,

where @ =1 — a. Similarly, multiplying (4.2) by z*

and summing over the range k =1, 2,...we obtain

0(z) = Z(ciqlzp_l—apoz)_ (45)

az*—z+aq,

Note the duality between R(z) and Q(z) with
regard to the variables a, ¢;, and g,.

The denominator roots (i.e. the poles) of R(z)
are given by

1-/(1 - 2a)* + 4adg,

& 2a ?
1+ \/(1 —2a)’ + 4aaq,
r2 = 2a S (4.9)
Similarly, the poles of Q(z) are given by
1- \/(1 —2a)’ + 4aag,
L 2a :
1+ \/(1 —2a)’ + 4aag,
8= 35 . (4.10)
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It is easy to show that these four poles are real
and that 0<r;<1,1<r, 0<s;<1 and 1<s5,.
Since R(z) and Q(z) are both analytic in the
region |z| <1, it must be that numerator (R(r,))
=0 and numerator (Q(s;))=0. From this ob-
servation and from (4.7) and (4.8) we have

ar
pPi= ﬁ—z}lzpo’ (4.11)
as
P1= a_cjipo' (4~12)

In addition, by conserving probability we have

Po+R(1)+0(1)=1. (4.13)
From these last three we readily find
=], =1
_(n=D(s-n) )

78, — 1
From (4.11) and (4.12) we may simply rewrite
R(z) and Q(z) as

40
=g’

ZPo
SZ_Z .

R(z)= 0(z) =

We may now invert both R(z) and Q(z) to
give us the equilibrium distribution for our Markov
Chain, namely,

(4.15)

1 k
pO(T) s k=051,2)'--,
2
Pr= 11k (4.16)
po(s—z) o s Bl B B

Equation (4.16), along with (4.9), (4.10) and (4.14),
give us the complete solution to the Markov Chain.
To find the average separation between these
two processes on the x-axis, namely, K =
lim, , E[|D(t)|], we calculate as follows:

K=Y k(pi+p_i)
k=1

which gives us

Pl =17 (m-17]

Let us now calculate the speedup S which is
defined as the rate at which the two processor
system carries out useful processing divided by the
rate at which an equivalent single processor carries
out useful processing. We define the equivalent
single processor as one which moves a process
along the time axis at a rate equal to the average

(4.17)

rate of the two original processes, namely: (A, +
A,). In this single processor case, there is no
rollback to worry about and so useful progress
occurs at the rate 3(A; + A,). In the two processor
case, useful progress is equal to the sum of the two
rates minus the expected rollback for each pro-
cess. If D(t) = k at time ¢, and if the next advance
along the x-axis is made by the lagging process
which also causes the leading process to rollback
(with probability g¢,), then the leading process will
be rolled back only a distance k —1 since the
lagging process just advanced one step along the
x-axis. Thus, we see that the rate at which the two
processor system advances, on average, is given by

A A, — Z AzQsz(k - 1)
k=1

oo}
- Z Marp_i(k—1).
k=1
Thus, the speedup is given by

S=2-2ag, ¥, pi(k-1)
k=1

—2aq, E Pzl L)
k=1

This leads us to the following general expression
for the system speedup:
aq,py  aqypo

S=2{1- > =]
("2_1) {5y=1)

(4.18)

S. The Symmetric Case ¢, = ¢,

In this section we consider the symmetric case
where g, = g, = ¢; that is, each process has the
same probability of sending a message to the other
process. We now have ar, = as; and ar, = as,.

The speedup is shown in Fig. 3 as a function of
a and g. For a =}, the speedup rises continously
to its maximum value of S=2 as ¢— 0. For
q=0, S=2 for all a but S has a discontinuity
for all a+# %; this discontinuity is not shown
clearly in Fig. 3. (For ¢ =0, no rollbacks occur
and it is intuitively clear that S=2.) Note for
q >0 that, when @ — 0 or 'a =1 (that is, A, =0
or A, - 0), then the speedlip goes to 0; this is the
case, since one process moves extremely slowly
(compared to the equivalent single process) and it
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Speedup

10
Fig. 3. Speedup for the symmetric case, G1=q¢>=q.

will occasionally drag the faster process back to its
lagging position.

6. The Balanced Case A, =),

Here we consider the balanced case where both

processes move at the same rate giving us a = (1

—a)=3. We see that n=1-\g,, n=1+g,,

s;=1- \/a and 5, =1+ \/a In addition,

- V419>
e V4192 +\/E+@'

Furthermore, in this case, we find that the speed-
up is simply

o2l + @)
Varg2 + o + g,

In Fig. 4 we show the speedup as a function of 4
and g,. Note, of course, that the speedup goes to 2
for ¢, = g, =0 and goes to % for ¢; = ¢, =1.

(6.1)

(6.2)

Fig. 4. Speedup for the balanced case, A, = X, (a =1).

7. The Symmetric Balanced Case: q1=¢, and A,
=,

In this symmetric balanced case, where both
processes move at the same speed and both have
the same probability, ¢, =g, =g, of passing a
message to the other process, we obtain great
simplifications. In particular, we have n=s=1
— ﬁ and r,=s5,=1+ ‘/E Note, again, that g =
(1 —a)= 3. In this case we find,

= __LQ
Po ) o= ( )
The average process separation becomes

K= 2+ ) (7.2)

_

Va(2+yq)

The speedup is given by

4
S_W.

The speedup function in this very special case is
shown in Fig. 5. Note for g = 0 that S = 2 whereas
for g=1 we have S=4%. We can see this last
result intuitively as follows. If each process always
sends a message to the other process when it
advances, then the time for both processes to
advance one unit is equal to the maximum of two
exponential delays which we know is equal to 1.5
times the mean. Thus, the rate of progress for each
process is simply % times the rate of a single
process. Since both are moving at a rate %, the
sum is equal to § which yields the result for g=1.

(1.3)

2.0

o
>
©
3
o
Q.
? 14
4/3
1.2
1.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
q
Fig. 5. Speedup for the symmetric, balanced case, ¢, = ¢, = g,

A=Ay (a=3).
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8. Conclusions

In this paper we have focused on the speedup
available when two processes limit each others’
rate of progress by passing messages between each
other (these messages may cause a process to roll
back and therefore waste some of the work it has
accomplished). We gave the complete solution for
the important system performance variables in the
general case. We found for the symmetric bal-
anced case that when ¢ = 0 the speedup reaches its
maximum value of 2 but that the speedup falls off
infinitely quickly as ¢ increases from 0, the limit-
ing speedup being 3 at g =1.

The analysis given here is for only two
processors. For larger numbers of interacting
processes, the mathematics becomes far more
complex and the most likely fruitful approach to
understand the interaction among many asynch-
ronous processes would be via approximate solu-
tions.

Synchronization is only one source of overhead
one finds in distributed systems. There are numer-
ous other issues which impact the performance of
distributed systems. Indeed, we are only beginning
to formulate the models and gain the understand-
ing required to analyze, design, and properly im-

plement distributed systems in this coming de-
cade.
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